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Abstract : The present paper gives an interaction of standing electromagnetic 
waves with a smooth convex triangular obstacle K and its adjacent wedge regions.  
The concerning electromagnetic fields are supposed to be independent of the 
variations along the axis of K. Governing Helmholtz wave equation, being resulted 
from the Maxwell’s field equations, have been encountered subject to initial 
boundary conditions of the field intensities on the wedge surfaces K∂ . The 
concerning boundary value problem has been particularly associated with Dirichlet 
and Neumann conditions on K∂ , giving rise to Dual-Bessel series relations. The 
unknown coefficients of the said dual series relations have been determined by 
making use of Lommel’s integral for a pair of Bessel functions of the first kind. 
Two existence theorems regarding the cylindrical mode of polarisation of 
electromagnetic wave have established, furnishing thereby the components electric 
and magnetic field intensity vectors. Wave characteristics like reflection and 
transmission have been determined on the basis of said existence theorem. Finally 
the expressions of the field intensities H and E have been utilized for determining 
the current density. 
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A convex triangular obstacle forms a vital part of a periodic echellete 

grating. In recent years [1-7] quite a good number of results have been reported 

pertaining to the groove field estimates and the efficiency of the said grating. The 

present paper deals with a general convex triangular prismatic obstacle K having 

an open base, a flare angle β, the groove depth ‘h’ and the grating period ‘d’   

Figure 1. The bounding faces K∂   of the obstacle K and its adjacent wedge 

surfaces Figure 2 are subjected to reflection, transmission and grazing due to an 

axially independent EM wave. EM field intensity ( )EHF ∨= are derived from 

the governing Maxwell’s equations  
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where H and E stand for the magnetic and the electric intensity vectors. The 

physical elements σ,∈, μ, J and B stand for conductivity, permittivity, 

permeability, current density and magnetic flux density associated with ‘M’, 

respectively. Maxwell’s equations have been encountered subject to prescribed 

initial boundary conditions of the EM field on K∂ . The concerning boundary value 

problems happens to be associated with the Dirichlet’s conditions and the 

Neumann’s conditions initially (t = 0) on K∂ . Dirichlet’s problem is an example of 

well posed boundary value problems as observed earlier [8-10]. An axially 

independent field intensity satisfies the condition 03 =∂∂ xF which leads to the 

independence of F relative to the directions parallel to the edges OO ′ , AA ′ and 

BB ′ of the model ‘M’. As such, a cylindrical wave function happen to exist as a 

solution of the Maxwell’s equation subject to cylindrical coordinate transformation 

3321 ,sin,cos xxxx === φρφρ . In particular a cylindrical wave is said to be 

axially independent whenever the associated wave function is independent of the   
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z coordinate. Hence an axially independent cylindrical wave has been arrived in 

the form of the Fourier-Bessel series [11-12] 

( ) ( ) ( )( ){ }∑
+∈

+∈−==
Ji

ii jtjkJ ηφσωρφρ η 2exp, AFF    

where 1≥η  and ik is the ith wave number in a certain frequency range associated 

with interacting EM waves. The unknown coefficients iA  happen to satisfy two 

pairs of dual-Bessel series relations in the wedge regions Ri (i =1, 2). Oblique 

coordinate transformation [13] being associated with the geometry of M have been 

found to be of great value for evaluating the coefficients iA . Finally, the 

expressions of F have been used for computing the current density.     

2. Formulation of the problem  

Consider the Maxwell’s equation  
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 where ( ) ( )txxx ,,, 321FEHF =∨=  stands for vector field intensity. 

Transforming (1) by using cylindrical coordinates zxxx === 321 ,sin,cos φρφρ  

subject to the axially independent condition 0
3

=
∂
∂
x
F , one can arrive at the equation  
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Now, applying variable separable method for the equation (2), one can arrive at the 

solution  

       ( ) ( ) ( )tFFFF 321 φρ=       

where F1, F2 and F3 satisfy the ordinary differential equations  
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The equations (3), (4) and (5) furnish the solutions  

   ( ) ( )ρρ η kJF =1 , ( ) JAeF ηφφ =2 and ∈−= 2
3

tBeF σ    (6) 

   222222 44 ck µωµσµ −=∈−       (6a) 

where ( )kJ ρη is the Bessel function of the first kind of order η , and A and B are 

arbitrary constants. The solution (6) of the wave equation (2) would give rise to an 

axially independent cylindrical wavelet  

     ( ) ( )( ){ }ηφσωρη jtjkJ +∈−= 2expF   (7) 

associate with the frequency ω and the wave number k, satisfying the non linear 

relation (6). 

Fourier-Bessel series for the solution (7) : 

 In order to match the solution (7) on the boundaries K of the model ‘M’ it is 

essential to sum up the same solution in the form of Fourier-Bessel series   
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 Now, assuming Dirichlet’s conditions  
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on the faces OA, AC, OB and BC` of the model M, one can arrive at the following 

pair of dual series relation by matching the Fourier-Bessel series (8) with the 

function ( )4,3,2,1=iFi   given by (9) for t = 0 
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Now, using the oblique transformation [13] 
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One can arrive at the coordinates  
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Hence one, can further express the dual equations in the form  
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where 
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and  
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J  

Now using Lommel’s integral [14] for orthogonality of ( )ρη ikJ  in the interval 

d≤≤ ρ0  one can express Ai in the form  
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Where ki is the ith positive zero of ( ) 0=dxJn , Combining (12) and (13) one can 

further arrive at the result 
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Now, combining (13) and (14) the unknown coefficients ‘Ai’ may be precisely 

determined by means of the formula    
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Neumann’s conditions on the boundaries K∂ : 

Assuming Neumann’s conditions  
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on the faces OA, AC, OB and BC` of the model ‘M’ one can arrive at the 

following pairs of dual equations  
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where the normal derivatives ( )2,1=
∂
∂ i
ni

may be expressed in the equivalent form  
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by means of the oblique transformations (11).  

Hence, combining (17) and (18) with (19) successively, one can arrive at the 

following pair of dual series relations : 
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where  ( ) ( )βαβρφβθβρ +=++= ′ sinsin,sinsin ba CBAC  

( )φβθηρρβθπαφ ++=≤≤≤≤−−≤≤≤≤− ′ cot,,,0,0 1 JHdbdaa CBAC
    

Making use of the recurrence relation [7] 
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the second equation in (20) can be expressed in the form  
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Now, imagine an unknown step function ( )ρ1h  satisfying the equation  
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such that  

  ( ) ( )ρρ 11 fh =  for a≤≤ ρ0 and ( )0,,1 φρACg for da AC ≤≤ ρ   (24) 

and  ( )0,,1 φρACg is supposed to be continuous at the corner ‘A’ of the wedge 

region R1 : ∆ OAC. 

 Again, using the theory of Fourier-Bessel series, and can evaluate ‘Ai’ by 

means of the formula  
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where ik is the ith positive root of the transcendental equation ( ) 01 =− dkJη . 

 Axially independent cylindrical wave functions and the components of 

electric and magnetic intensities vectors : 

The expression (8) represents a cylindrical wave function  

    ( ) ( ) tJtF eet ωσφρφρ ∈−Φ=Φ 2,,,          (26) 
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where ( ) ( ) ( ) J

Ji
ii

F ekJF ηφ
η ρφρ ∑

+∈

=Φ A, stands for the free space axially 

independent cylindrical wave associated with the frequency ‘ω’ and the wave 

number k, satisfying the non-linear relation (6a). 
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where ( ) ( ) ( )tEH E
p

H
ppp ,,0,, φρφρ Φ∧Φ=∧ are time dependent wave functions 

satisfying the relations 
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for perfect dielectric condition 0=σ  

Hence, one can arrive at the following theorems : 

Theorem 1 : An axially independent magnetic intensity vector H is associated 

with a time dependent cylindrical wave ( )tH
p ,,φρΦ   of frequency ‘ω’ and the 

damping factor ( )∈2σ iff the bounding surfaces K∂ of the obstacle K is 

conducting ( )0≠σ , and the components of electric intensity vector E are given by 

(27) such that the relation ( )2222 44 σωµ +∈=∈ k  becomes valid. 

 

Theorem 2: An axially independent electric intensity vector E is said to be 

associated with a time dependent cylindrical wave ( )tE ,,φρΦ  of frequency ω and 

the damping factor ( )∈2σ iff the bounding factor K∂ of the obstacle K is 

conducting ( )0=σ , and the components of magnetic intensity vector H are given 

by (28) such that the relation ( )2222 44 σωµ +∈=∈ k  becomes valid.  

Determination of current density J: 

A current density is constituted by the conduction current Jc and the displacement 

current Jd  according to Maxwell’s theorem  in electromagnetics and thus one can 

express J in the form  

   ( ) ( )t
t

tdc ,,,, φρφρσ
∂
∂

∈+=+=
EEJJJ       (36)  
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Now, combining the relation (26) and (36), J may be finally expressed in the 

following form  

     ( ) ( )( )( ) ( )12, 2 −=∈+= −∈ jje jtE ωσφρφ ωσJ    (37) 

where, ( )φρ ,FΦ  stands for a cylindrical wave function associated with the electric 

field intensity E is given by the relations:  

      ( ) ( ) ( )( ){ }tjt E ∈−Φ= 2exp,,, σωφρφρE   

and  

      ( ) ( ) ( )∑
+∈

=Φ
Ji

J
ii

E ekJF ηφ
η ρφρ A,  

3. Conclusions    

The present paper gives an interaction of an axially independent EM field 

associated with an echellets model. The model happens to be vital part of a 

periodic echellete antenna forming a corrugated structure. The present field of 

study happens to be equivalent to EM boundary value problems. Two important 

EM problems due to Dirichlet and Neumann have been taken into consideration 

subject to the prescribed values of the said EM field and its normal derivatives on 

the boundaries of the model. The wave nature of the present EM field has been 

justified by arriving at the non-linear relation  

     222222 44 ∈+=∈ µωσµµ k  

The governing Maxwell’s equations have been encountered for finding the 

magnetic field intensity and the electric field intensity vectors subject to Dirichlet’s 

and Neumann’s boundary conditions on the outer surfaces of the said model. 

Finally the results have been used for computing the current density. 
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Figure 1. 

 A convex triangular prism of dimensions a, b, d and with it’s 
flare angle ‘β’, OO ′  is perpendicular to the planes ∆s OAB  and BAO ′′′ . 
 
Figure 2.  

 A model ‘M’ consists of a triangular prism formed by ∆s OAB  
and BAO ′′′ and its adjacent groove regions formed by the sides CB ′  and 
AC and the sides parallel to OO ′ , OA and OB. 
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